구조방정식 cSEM사용법 by 박중희 인지과학

2024. 2. 19. 17:36카테고리 없음

 assess(b2)
________________________________________________________________________________

        Construct        AVE           R2          R2_adj
        SAT            0.6851        0.7624        0.7585
        LOY            0.5552        0.5868        0.5834
        EXPE             NA          0.2222        0.2190
        QUAL             NA          0.6963        0.6951
        VAL              NA          0.5474        0.5438

-------------- Common (internal consistency) reliability estimates -------------

        Construct Cronbachs_alpha   Joereskogs_rho   Dijkstra-Henselers_rho_A
        SAT        0.8940           0.8960                0.9051
        LOY        0.8194           0.8237                0.8761

----------- Alternative (internal consistency) reliability estimates -----------

        Construct       RhoC         RhoC_mm    RhoC_weighted
        SAT            0.8960        0.8938        0.9051
        LOY            0.8237        0.8011        0.8761

        Construct  RhoC_weighted_mm     RhoT      RhoT_weighted
        SAT            0.9051        0.8940        0.8869
        LOY            0.8761        0.8194        0.7850

--------------------------- Distance and fit measures --------------------------

        Geodesic distance             = 0.6493432
        Squared Euclidean distance    = 2.23402
        ML distance                   = 2.921932

        Chi_square       = 727.5611
        Chi_square_df    = 3.954137
        CFI              = 0.8598825
        CN               = 75.14588
        GFI              = 0.7280612
        IFI              = 0.8615598
        NFI              = 0.8229918
        NNFI             = 0.8240917
        RMSEA            = 0.108922
        RMS_theta        = 0.05069299
        SRMR             = 0.09396871

        Degrees of freedom       = 184

--------------------------- Model selection criteria ---------------------------

        Construct        AIC          AICc          AICu     
        EXPE          -59.8152      192.2824      -57.8072
        QUAL          -294.9343     -42.8367      -292.9263
        VAL           -193.2127      58.9506      -190.1945
        SAT           -350.2874     -97.9418      -345.2368
        LOY           -215.9322      36.2311      -212.9141

        Construct        BIC           FPE           GM
        EXPE          -52.7723       0.7872       259.8087
        QUAL          -287.8914      0.3074       271.8568
        VAL           -182.6483      0.4617       312.7010
        SAT           -332.6801      0.2463       278.2973
        LOY           -205.3678      0.4216       291.0665

        Construct        HQ            HQc       Mallows_Cp
        EXPE          -56.9806      -56.8695       2.7658
        QUAL          -292.0997     -291.9886      14.8139   
        VAL           -188.9608     -188.7516      52.1366
        SAT           -343.2010     -342.7088      10.6900
        LOY           -211.6804     -211.4711      30.5022

----------------------- Variance inflation factors (VIFs) ----------------------

  Dependent construct: 'VAL'

        Independent construct    VIF value
        EXPE                      3.2928
        QUAL                      3.2928

  Dependent construct: 'SAT'

        Independent construct    VIF value
        EXPE                      3.2985
        QUAL                      4.4151
        IMAG                      1.7280
        VAL                       2.6726

  Dependent construct: 'LOY'

        Independent construct    VIF value
        IMAG                      1.9345
        SAT                       1.9345

-------------- Variance inflation factors (VIFs) for modeB weights -------------

  Construct: 'IMAG'

        Weight    VIF value
        imag1      1.7215
        imag2      3.0515
        imag3      2.5356

  Construct: 'EXPE'

        Weight    VIF value
        expe1      1.4949
        expe2      1.6623
        expe3      1.5212

  Construct: 'QUAL'

        Weight    VIF value
        qual1      1.8401
        qual2      2.5005
        qual3      1.7796
        qual4      2.1557
        qual5      2.0206

  Construct: 'VAL'

        Weight    VIF value
        val1       1.6912
        val2       2.2049
        val3       1.6714

-------------------------- Effect sizes (Cohen's f^2) --------------------------

  Dependent construct: 'EXPE'

        Independent construct       f^2
        IMAG                      0.2856

  Dependent construct: 'QUAL'

        Independent construct       f^2
        EXPE                      2.2928

  Dependent construct: 'VAL'

        Independent construct       f^2
        EXPE                      0.0014
        QUAL                      0.3301

  Dependent construct: 'SAT'

        Independent construct       f^2
        IMAG                      0.1462
        EXPE                      0.0004
        QUAL                      0.0468
        VAL                       0.4373

  Dependent construct: 'LOY'

        Independent construct       f^2
        IMAG                      0.0414
        SAT                       0.4938

----------------------- Discriminant validity assessment -----------------------

        Heterotrait-monotrait ratio of correlations matrix (HTMT matrix)

          SAT LOY
SAT 1.0000000   0
LOY 0.7432489   1


        Advanced heterotrait-monotrait ratio of correlations matrix (HTMT2 matrix)

          SAT LOY
SAT 1.0000000   0
LOY 0.7140046   1


        Fornell-Larcker matrix

          SAT       LOY
SAT 0.6851491 0.5696460
LOY 0.5696460 0.5551718


------------------------------------ Effects -----------------------------------

Estimated total effects:
========================
  Total effect    Estimate  Std. error   t-stat.   p-value
  EXPE ~ IMAG       0.4714      0.0618    7.6328    0.0000
  QUAL ~ IMAG       0.3933      0.0577    6.8182    0.0000
  QUAL ~ EXPE       0.8344      0.0230   36.2697    0.0000
  VAL ~ IMAG        0.2974      0.0571    5.2092    0.0000
  VAL ~ EXPE        0.6309      0.0494   12.7709    0.0000
  VAL ~ QUAL        0.7013      0.0809    8.6684    0.0000
  SAT ~ IMAG        0.4807      0.0654    7.3490    0.0000
  SAT ~ EXPE        0.5001      0.0579    8.6328    0.0000
  SAT ~ QUAL        0.5911      0.0935    6.3203    0.0000
  SAT ~ VAL         0.5270      0.0848    6.2150    0.0000
  LOY ~ IMAG        0.4840      0.0666    7.2622    0.0000
  LOY ~ EXPE        0.3142      0.0563    5.5764    0.0000
  LOY ~ QUAL        0.3714      0.0865    4.2955    0.0000
  LOY ~ VAL         0.3311      0.0722    4.5831    0.0000
  LOY ~ SAT         0.6283      0.0838    7.5020    0.0000

Estimated indirect effects:
===========================
  Indirect effect    Estimate  Std. error   t-stat.   p-value
  QUAL ~ IMAG          0.3933      0.0577    6.8182    0.0000
  VAL ~ IMAG           0.2974      0.0571    5.2092    0.0000
  VAL ~ EXPE           0.5852      0.0691    8.4704    0.0000
  SAT ~ IMAG           0.2357      0.0470    5.0203    0.0000
  SAT ~ EXPE           0.5173      0.0696    7.4290    0.0000
  SAT ~ QUAL           0.3696      0.0641    5.7670    0.0000
  LOY ~ IMAG           0.3020      0.0568    5.3175    0.0000
  LOY ~ EXPE           0.3142      0.0563    5.5764    0.0000
  LOY ~ QUAL           0.3714      0.0865    4.2955    0.0000
  LOY ~ VAL            0.3311      0.0722    4.5831    0.0000
________________________________________________________________________________​
# Setting `.resample_method`
b1 <- csem(.data = satisfaction, .model = model, .resample_method = "bootstrap")
b1
cSEM::summarize(b1)

구조방정식 cSEM은 기본적으로 구조방정식 분석에서 lavaan 신택스를 그대로 사용하기도 하는 편리한 라이브러리이다. 

이번에는 몇 가지 기본적인  

library(tidyverse)
library(cSEM)

data("satisfaction")

데이터의 구조는 다음과 같다. 

satisfaction %>% str()
'data.frame':   250 obs. of  27 variables:
 $ imag1: int  8 9 9 8 10 7 5 9 9 10 ...
 $ imag2: int  8 9 8 9 10 8 5 9 8 10 ...
 $ imag3: int  9 10 8 8 8 8 5 9 9 10 ...
 $ imag4: int  5 9 8 9 10 8 5 9 8 10 ...
 $ imag5: int  6 7 8 7 8 8 2 9 5 10 ...
 $ expe1: int  9 9 8 10 7 8 7 10 7 10 ...
 $ expe2: int  9 8 8 6 9 8 6 10 8 10 ...
 $ expe3: int  5 10 8 3 8 8 5 10 7 10 ...
 $ expe4: int  8 8 9 10 9 9 6 10 7 10 ...
 $ expe5: int  9 9 9 10 8 10 6 10 5 10 ...
 $ qual1: int  6 7 7 7 7 6 4 8 6 10 ...
 $ qual2: int  8 9 9 3 9 6 4 9 8 10 ...
 $ qual3: int  2 7 6 2 8 7 2 9 7 8 ...
 $ qual4: int  7 8 8 10 9 7 3 9 7 10 ...
 $ qual5: int  7 7 6 8 8 7 3 9 5 10 ...
 $ val1 : int  7 8 8 6 9 8 5 8 9 10 ...
 $ val2 : int  10 8 9 7 10 7 6 8 8 10 ...
 $ val3 : int  5 7 7 6 10 6 4 8 7 10 ...
 $ val4 : int  6 8 8 4 8 5 5 8 7 10 ...
 $ sat1 : int  6 8 9 7 8 7 6 8 8 10 ...
 $ sat2 : int  7 7 8 7 8 6 5 8 7 10 ...
 $ sat3 : int  6 8 8 7 8 6 6 8 6 9 ...
 $ sat4 : int  7 7 8 6 7 7 4 8 6 10 ...
 $ loy1 : int  9 8 9 6 8 7 5 9 7 10 ...
 $ loy2 : int  9 9 8 6 9 8 6 8 7 8 ...
 $ loy3 : int  6 8 9 5 9 8 6 3 5 8 ...
 $ loy4 : int  6 8 9 5 9 7 5 8 8 10 ...

 

 

모형구성 

model <- "
# Structural model
EXPE ~ IMAG
QUAL ~ EXPE
VAL  ~ EXPE + QUAL
SAT  ~ IMAG + EXPE + QUAL + VAL
LOY  ~ IMAG + SAT

# Composite model
IMAG <~ imag1 + imag2 + imag3
EXPE <~ expe1 + expe2 + expe3
QUAL <~ qual1 + qual2 + qual3 + qual4 + qual5
VAL  <~ val1  + val2  + val3

# Reflective measurement model
SAT  =~ sat1  + sat2  + sat3  + sat4
LOY  =~ loy1  + loy2  + loy3  + loy4
"

# Estimate using defaults
res <- csem(.data = satisfaction, .model = model)

cSEM의 데이터에서 summary()함수는 간단한 요약만을 보여준다. 따라서, 각각의 저장된 데이터를 봐야 한다.

summary(res)
            Length Class  Mode
Estimates   14     -none- list
Information  7     -none- list

 

## Get a summary
cSEM::summarize(res)

cSEM::summarize(res)       
________________________________________________________________________________       
----------------------------------- Overview -----------------------------------       

        General information: 
        ------------------------
        Estimation status                  = Ok
        Number of observations             = 250
        Weight estimator                   = PLS-PM       
        Inner weighting scheme             = "path"       
        Type of indicator correlation      = Pearson      
        Path model estimator               = OLS
        Second-order approach              = NA
        Type of path model                 = Linear       
        Disattenuated                      = Yes (PLSc)   

        Construct details:   
        ------------------   
        Name  Modeled as     Order         Mode

        IMAG  Composite      First order   "modeB"        
        EXPE  Composite      First order   "modeB"        
        QUAL  Composite      First order   "modeB"        
        VAL   Composite      First order   "modeB"        
        SAT   Common factor  First order   "modeA"        
        LOY   Common factor  First order   "modeA"        

----------------------------------- Estimates ----------------------------------       

Estimated path coefficients: 
============================ 
  Path           Estimate  Std. error   t-stat.   p-value 
  EXPE ~ IMAG      0.4714          NA        NA        NA 
  QUAL ~ EXPE      0.8344          NA        NA        NA 
  VAL ~ EXPE       0.0457          NA        NA        NA 
  VAL ~ QUAL       0.7013          NA        NA        NA 
  SAT ~ IMAG       0.2450          NA        NA        NA 
  SAT ~ EXPE      -0.0172          NA        NA        NA 
  SAT ~ QUAL       0.2215          NA        NA        NA 
  SAT ~ VAL        0.5270          NA        NA        NA 
  LOY ~ IMAG       0.1819          NA        NA        NA 
  LOY ~ SAT        0.6283          NA        NA        NA 

Estimated loadings:
===================
  Loading          Estimate  Std. error   t-stat.   p-value
  IMAG =~ imag1      0.6306          NA        NA        NA
  IMAG =~ imag2      0.9246          NA        NA        NA
  IMAG =~ imag3      0.9577          NA        NA        NA
  EXPE =~ expe1      0.7525          NA        NA        NA
  EXPE =~ expe2      0.9348          NA        NA        NA
  EXPE =~ expe3      0.7295          NA        NA        NA
  QUAL =~ qual1      0.7861          NA        NA        NA
  QUAL =~ qual2      0.9244          NA        NA        NA
  QUAL =~ qual3      0.7560          NA        NA        NA
  QUAL =~ qual4      0.7632          NA        NA        NA
  QUAL =~ qual5      0.7834          NA        NA        NA
  VAL =~ val1        0.9518          NA        NA        NA
  VAL =~ val2        0.8056          NA        NA        NA
  VAL =~ val3        0.6763          NA        NA        NA
  SAT =~ sat1        0.9243          NA        NA        NA
  SAT =~ sat2        0.8813          NA        NA        NA
  SAT =~ sat3        0.7127          NA        NA        NA
  SAT =~ sat4        0.7756          NA        NA        NA
  LOY =~ loy1        0.9097          NA        NA        NA
  LOY =~ loy2        0.5775          NA        NA        NA
  LOY =~ loy3        0.9043          NA        NA        NA
  LOY =~ loy4        0.4917          NA        NA        NA

Estimated weights:
==================
  Weight           Estimate  Std. error   t-stat.   p-value
  IMAG <~ imag1      0.0156          NA        NA        NA
  IMAG <~ imag2      0.4473          NA        NA        NA
  IMAG <~ imag3      0.6020          NA        NA        NA
  EXPE <~ expe1      0.2946          NA        NA        NA
  EXPE <~ expe2      0.6473          NA        NA        NA
  EXPE <~ expe3      0.2374          NA        NA        NA
  QUAL <~ qual1      0.2370          NA        NA        NA
  QUAL <~ qual2      0.4712          NA        NA        NA
  QUAL <~ qual3      0.1831          NA        NA        NA
  QUAL <~ qual4      0.1037          NA        NA        NA
  QUAL <~ qual5      0.2049          NA        NA        NA
  VAL <~ val1        0.7163          NA        NA        NA
  VAL <~ val2        0.2202          NA        NA        NA
  VAL <~ val3        0.2082          NA        NA        NA
  SAT <~ sat1        0.3209          NA        NA        NA
  SAT <~ sat2        0.3059          NA        NA        NA
  SAT <~ sat3        0.2474          NA        NA        NA
  SAT <~ sat4        0.2692          NA        NA        NA
  LOY <~ loy1        0.3834          NA        NA        NA
  LOY <~ loy2        0.2434          NA        NA        NA
  LOY <~ loy3        0.3812          NA        NA        NA
  LOY <~ loy4        0.2073          NA        NA        NA

Estimated indicator correlations:
=================================
  Correlation       Estimate  Std. error   t-stat.   p-value
  imag1 ~~ imag2      0.6437          NA        NA        NA
  imag1 ~~ imag3      0.5433          NA        NA        NA
  imag2 ~~ imag3      0.7761          NA        NA        NA
  expe1 ~~ expe2      0.5353          NA        NA        NA
  expe1 ~~ expe3      0.4694          NA        NA        NA
  expe2 ~~ expe3      0.5467          NA        NA        NA
  qual1 ~~ qual2      0.6053          NA        NA        NA
  qual1 ~~ qual3      0.5406          NA        NA        NA
  qual1 ~~ qual4      0.5662          NA        NA        NA
  qual1 ~~ qual5      0.5180          NA        NA        NA
  qual2 ~~ qual3      0.6187          NA        NA        NA
       NA        NA        NA  LOY ~ VAL         0.3311          NA        NA        NA  LOY ~ SAT         0.6283          NA        NA        NA
Estimated indirect effects:
===========================
  Indirect effect    Estimate  Std. error   t-stat.   p-value
  QUAL ~ IMAG          0.3933          NA        NA        NA
  VAL ~ IMAG           0.2974          NA        NA        NA
  VAL ~ EXPE           0.5852          NA        NA        NA
  SAT ~ IMAG           0.2357          NA        NA        NA
  SAT ~ EXPE           0.5173          NA        NA        NA
  SAT ~ QUAL           0.3696          NA        NA        NA
  LOY ~ IMAG           0.3020          NA        NA        NA
  LOY ~ EXPE           0.3142          NA        NA        NA
  LOY ~ QUAL           0.3714          NA        NA        NA
  LOY ~ VAL            0.3311          NA        NA        NA
________________________________________________________________________________

verify(res)

verify(res)
________________________________________________________________________________

Verify admissibility:

         admissible

Details:

  Code   Status    Description
  1      ok        Convergence achieved
  2      ok        All absolute standardized loading estimates <= 1
  3      ok        Construct VCV is positive semi-definite
  4      ok        All reliability estimates <= 1
  5      ok        Model-implied indicator VCV is positive semi-definite
________________________________________________________________________________

모델핏에 대한 테스트 

## Test overall model fit
testOMF(res)

testOMF(res)
________________________________________________________________________________
--------- Test for overall model fit based on Beran & Srivastava (1985) --------

Null hypothesis:

       ┌──────────────────────────────────────────────────────────────────┐
       │                                                                  │
       │   H0: The model-implied indicator covariance matrix equals the   │
       │   population indicator covariance matrix.                        │
       │                                                                  │
       └──────────────────────────────────────────────────────────────────┘

Test statistic and critical value:

                                                Critical value
        Distance measure    Test statistic        95%
        dG                      0.6493          0.3164
        SRMR                    0.0940          0.0522
        dL                      2.2340          0.6888
        dML                     2.9219          1.5728


Decision:

                                Significance level
        Distance measure          95%
        dG                      reject
        SRMR                    reject
        dL                      reject
        dML                     reject

Additional information:

        Out of 499 bootstrap replications 477 are admissible.
        See ?verify() for what constitutes an inadmissible result.

        The seed used was: -612123717
________________________________________________________________________________

 

중요한 것은 cSEM에는 bootstrap을 해서 유의성 결과를 얻어야 한다. 

# Setting `.resample_method`
b1 <- csem(.data = satisfaction, .model = model, .resample_method = "bootstrap")
b1
cSEM::summarize(b1)
b1
________________________________________________________________________________
----------------------------------- Overview -----------------------------------

Estimation was successful.

The result is a list of class cSEMResults with list elements:

        - Estimates
        - Information

To get an overview or help type:

        - ?cSEMResults
        - str(<object-name>)
        - listviewer::jsondedit(<object-name>, mode = 'view')

If you wish to access the list elements directly type e.g.

        - <object-name>$Estimates

Available postestimation commands:

        - assess(<object-name>)
        - infer(<object-name)
        - predict(<object-name>)
        - summarize(<object-name>)
        - verify(<object-name>)
________________________________________________________________________________

전체 결과 요약정리 

 cSEM::summarize(b1)
________________________________________________________________________________
----------------------------------- Overview -----------------------------------

        General information:
        ------------------------
        Estimation status                  = Ok
        Number of observations             = 250
        Weight estimator                   = PLS-PM
        Inner weighting scheme             = "path"
        Type of indicator correlation      = Pearson
        Path model estimator               = OLS
        Second-order approach              = NA
        Type of path model                 = Linear
        Disattenuated                      = Yes (PLSc)

        Resample information:
        ---------------------
        Resample method                    = "bootstrap"
        Number of resamples                = 499
        Number of admissible results       = 487
        Approach to handle inadmissibles   = "drop"
        Sign change option                 = "none"
        Random seed                        = -2118513441

        Construct details:
        ------------------
        Name  Modeled as     Order         Mode

        IMAG  Composite      First order   "modeB"
        EXPE  Composite      First order   "modeB"
        QUAL  Composite      First order   "modeB"
        VAL   Composite      First order   "modeB"
        SAT   Common factor  First order   "modeA"
        LOY   Common factor  First order   "modeA"

----------------------------------- Estimates ----------------------------------

Estimated path coefficients:
============================
                                                             CI_percentile
  Path           Estimate  Std. error   t-stat.   p-value         95%
  EXPE ~ IMAG      0.4714      0.0665    7.0927    0.0000 [ 0.3391; 0.5869 ]
  QUAL ~ EXPE      0.8344      0.0240   34.7047    0.0000 [ 0.7802; 0.8747 ]
  VAL ~ EXPE       0.0457      0.0876    0.5218    0.6018 [-0.1188; 0.2260 ]
  VAL ~ QUAL       0.7013      0.0838    8.3650    0.0000 [ 0.5227; 0.8526 ]
  SAT ~ IMAG       0.2450      0.0529    4.6282    0.0000 [ 0.1451; 0.3435 ]
  SAT ~ EXPE      -0.0172      0.0749   -0.2301    0.8180 [-0.1681; 0.1311 ]
  SAT ~ QUAL       0.2215      0.1038    2.1348    0.0328 [ 0.0520; 0.4472 ]
  SAT ~ VAL        0.5270      0.0843    6.2478    0.0000 [ 0.3597; 0.6648 ]
  LOY ~ IMAG       0.1819      0.0754    2.4115    0.0159 [ 0.0372; 0.3295 ]
  LOY ~ SAT        0.6283      0.0792    7.9338    0.0000 [ 0.4730; 0.7894 ]

Estimated loadings:
===================
                                                               CI_percentile
  Loading          Estimate  Std. error   t-stat.   p-value         95%
  IMAG =~ imag1      0.6306      0.0955    6.6047    0.0000 [ 0.4255; 0.8058 ]
  IMAG =~ imag2      0.9246      0.0406   22.7559    0.0000 [ 0.8244; 0.9759 ]
  IMAG =~ imag3      0.9577      0.0287   33.3615    0.0000 [ 0.8815; 0.9910 ]
  EXPE =~ expe1      0.7525      0.0762    9.8692    0.0000 [ 0.5806; 0.8752 ] 
  EXPE =~ expe2      0.9348      0.0288   32.4265    0.0000 [ 0.8569; 0.9716 ]
  EXPE =~ expe3      0.7295      0.0693   10.5274    0.0000 [ 0.5670; 0.8348 ]
  QUAL =~ qual1      0.7861      0.0631   12.4486    0.0000 [ 0.6440; 0.8867 ]
  QUAL =~ qual2      0.9244      0.0232   39.8112    0.0000 [ 0.8718; 0.9580 ]
  QUAL =~ qual3      0.7560      0.0580   13.0446    0.0000 [ 0.6194; 0.8479 ]
  QUAL =~ qual4      0.7632      0.0539   14.1715    0.0000 [ 0.6388; 0.8556 ]
  QUAL =~ qual5      0.7834      0.0454   17.2667    0.0000 [ 0.6862; 0.8572 ]
  VAL =~ val1        0.9518      0.0226   42.1357    0.0000 [ 0.8995; 0.9827 ]
  VAL =~ val2        0.8056      0.0608   13.2497    0.0000 [ 0.6606; 0.9055 ]
  VAL =~ val3        0.6763      0.0725    9.3255    0.0000 [ 0.5232; 0.8189 ]
  SAT =~ sat1        0.9243      0.0237   38.9743    0.0000 [ 0.8678; 0.9617 ]
  SAT =~ sat2        0.8813      0.0295   29.8441    0.0000 [ 0.8165; 0.9328 ]
  SAT =~ sat3        0.7127      0.0516   13.8022    0.0000 [ 0.6128; 0.8028 ]
  SAT =~ sat4        0.7756      0.0496   15.6344    0.0000 [ 0.6739; 0.8666 ]
  LOY =~ loy1        0.9097      0.0505   17.9990    0.0000 [ 0.7980; 0.9867 ]
  LOY =~ loy2        0.5775      0.0840    6.8745    0.0000 [ 0.3857; 0.7155 ]
  LOY =~ loy3        0.9043      0.0411   22.0016    0.0000 [ 0.8086; 0.9716 ]
  LOY =~ loy4        0.4917      0.1012    4.8580    0.0000 [ 0.2887; 0.6755 ]

Estimated weights:
==================
                                                               CI_percentile
  Weight           Estimate  Std. error   t-stat.   p-value         95%
  IMAG <~ imag1      0.0156      0.1094    0.1430    0.8863 [-0.1923; 0.2252 ]
  IMAG <~ imag2      0.4473      0.1510    2.9619    0.0031 [ 0.1568; 0.7311 ]
  IMAG <~ imag3      0.6020      0.1407    4.2795    0.0000 [ 0.3083; 0.8548 ]
  EXPE <~ expe1      0.2946      0.1124    2.6218    0.0087 [ 0.0849; 0.5221 ]
  EXPE <~ expe2      0.6473      0.0845    7.6576    0.0000 [ 0.4684; 0.7906 ]
  EXPE <~ expe3      0.2374      0.0900    2.6369    0.0084 [ 0.0503; 0.3868 ]
  QUAL <~ qual1      0.2370      0.0873    2.7148    0.0066 [ 0.0855; 0.4180 ]
  QUAL <~ qual2      0.4712      0.0754    6.2475    0.0000 [ 0.3140; 0.6219 ]
  QUAL <~ qual3      0.1831      0.0777    2.3546    0.0185 [ 0.0127; 0.3269 ]
  QUAL <~ qual4      0.1037      0.0605    1.7138    0.0866 [-0.0076; 0.2203 ]
  QUAL <~ qual5      0.2049      0.0639    3.2084    0.0013 [ 0.0768; 0.3307 ]
  VAL <~ val1        0.7163      0.0912    7.8573    0.0000 [ 0.5205; 0.8657 ]
  VAL <~ val2        0.2202      0.0896    2.4584    0.0140 [ 0.0644; 0.4103 ]
  VAL <~ val3        0.2082      0.0623    3.3399    0.0008 [ 0.0830; 0.3336 ]
  SAT <~ sat1        0.3209      0.0152   21.1303    0.0000 [ 0.2943; 0.3545 ]
  SAT <~ sat2        0.3059      0.0128   23.8497    0.0000 [ 0.2860; 0.3347 ]
  SAT <~ sat3        0.2474      0.0115   21.5064    0.0000 [ 0.2229; 0.2703 ]
  SAT <~ sat4        0.2692      0.0133   20.2356    0.0000 [ 0.2439; 0.2961 ]
  LOY <~ loy1        0.3834      0.0265   14.4769    0.0000 [ 0.3346; 0.4332 ]
  LOY <~ loy2        0.2434      0.0300    8.1070    0.0000 [ 0.1792; 0.2933 ]
  LOY <~ loy3        0.3812      0.0269   14.1562    0.0000 [ 0.3312; 0.4342 ]
  LOY <~ loy4        0.2073      0.0373    5.5603    0.0000 [ 0.1339; 0.2761 ]

Estimated indicator correlations:
=================================
                                                                CI_percentile
  Correlation       Estimate  Std. error   t-stat.   p-value         95%
  imag1 ~~ imag2      0.6437      0.0622   10.3439    0.0000 [ 0.5088; 0.7493 ]
  imag1 ~~ imag3      0.5433      0.0672    8.0853    0.0000 [ 0.4067; 0.6691 ]
  imag2 ~~ imag3      0.7761      0.0393   19.7487    0.0000 [ 0.6865; 0.8403 ]
  expe1 ~~ expe2      0.5353      0.0625    8.5613    0.0000 [ 0.3952; 0.6362 ]
  expe1 ~~ expe3      0.4694      0.0638    7.3586    0.0000 [ 0.3406; 0.5949 ]
  expe2 ~~ expe3      0.5467      0.0594    9.2026    0.0000 [ 0.4137; 0.6534 ]
  qual1 ~~ qual2      0.6053      0.0548   11.0443    0.0000 [ 0.4908; 0.7045 ]
  qual1 ~~ qual3      0.5406      0.0593    9.1169    0.0000 [ 0.4272; 0.6549 ]
  qual1 ~~ qual4      0.5662      0.0652    8.6818    0.0000 [ 0.4138; 0.6805 ]
  qual1 ~~ qual5      0.5180      0.0678    7.6396    0.0000 [ 0.3819; 0.6455 ]
  qual2 ~~ qual3      0.6187      0.0553   11.1933    0.0000 [ 0.5004; 0.7101 ]
  qual2 ~~ qual4      0.6517      0.0599   10.8783    0.0000 [ 0.5216; 0.7550 ]
  qual2 ~~ qual5      0.6291      0.0590   10.6628    0.0000 [ 0.5151; 0.7318 ]
  qual3 ~~ qual4      0.4752      0.0635    7.4791    0.0000 [ 0.3268; 0.5881 ] 
  qual3 ~~ qual5      0.5074      0.0616    8.2412    0.0000 [ 0.3842; 0.6136 ]
  qual4 ~~ qual5      0.6402      0.0558   11.4721    0.0000 [ 0.5164; 0.7411 ]
  val1 ~~ val2        0.6344      0.0522   12.1569    0.0000 [ 0.5273; 0.7313 ]
  val1 ~~ val3        0.4602      0.0694    6.6320    0.0000 [ 0.3385; 0.6031 ]
  val2 ~~ val3        0.6288      0.0661    9.5089    0.0000 [ 0.4971; 0.7577 ]

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================
                                                              CI_percentile
  Total effect    Estimate  Std. error   t-stat.   p-value         95%
  EXPE ~ IMAG       0.4714      0.0665    7.0927    0.0000 [ 0.3391; 0.5869 ]
  QUAL ~ IMAG       0.3933      0.0612    6.4218    0.0000 [ 0.2750; 0.5033 ]
  QUAL ~ EXPE       0.8344      0.0240   34.7047    0.0000 [ 0.7802; 0.8747 ]
  VAL ~ IMAG        0.2974      0.0611    4.8641    0.0000 [ 0.1778; 0.4207 ]
  VAL ~ EXPE        0.6309      0.0516   12.2371    0.0000 [ 0.5193; 0.7167 ]
  VAL ~ QUAL        0.7013      0.0838    8.3650    0.0000 [ 0.5227; 0.8526 ]
  SAT ~ IMAG        0.4807      0.0649    7.4036    0.0000 [ 0.3540; 0.6050 ] 
  SAT ~ EXPE        0.5001      0.0567    8.8127    0.0000 [ 0.3882; 0.6035 ]
  SAT ~ QUAL        0.5911      0.0966    6.1181    0.0000 [ 0.4159; 0.7823 ]
  SAT ~ VAL         0.5270      0.0843    6.2478    0.0000 [ 0.3597; 0.6648 ]
  LOY ~ IMAG        0.4840      0.0651    7.4298    0.0000 [ 0.3594; 0.6093 ]
  LOY ~ EXPE        0.3142      0.0544    5.7759    0.0000 [ 0.2135; 0.4231 ]
  LOY ~ QUAL        0.3714      0.0809    4.5899    0.0000 [ 0.2336; 0.5499 ]
  LOY ~ VAL         0.3311      0.0750    4.4151    0.0000 [ 0.1953; 0.4792 ]
  LOY ~ SAT         0.6283      0.0792    7.9338    0.0000 [ 0.4730; 0.7894 ]

Estimated indirect effects:
===========================
                                                                 CI_percentile
  Indirect effect    Estimate  Std. error   t-stat.   p-value         95%
  QUAL ~ IMAG          0.3933      0.0612    6.4218    0.0000 [ 0.2750; 0.5033 ]
  VAL ~ IMAG           0.2974      0.0611    4.8641    0.0000 [ 0.1778; 0.4207 ] 
  VAL ~ EXPE           0.5852      0.0728    8.0366    0.0000 [ 0.4209; 0.7287 ]
  SAT ~ IMAG           0.2357      0.0489    4.8245    0.0000 [ 0.1449; 0.3346 ]
  SAT ~ EXPE           0.5173      0.0683    7.5795    0.0000 [ 0.3838; 0.6544 ]
  SAT ~ QUAL           0.3696      0.0621    5.9513    0.0000 [ 0.2438; 0.4888 ]
  LOY ~ IMAG           0.3020      0.0549    5.4973    0.0000 [ 0.2072; 0.4204 ]
  LOY ~ EXPE           0.3142      0.0544    5.7759    0.0000 [ 0.2135; 0.4231 ]
  LOY ~ QUAL           0.3714      0.0809    4.5899    0.0000 [ 0.2336; 0.5499 ]
  LOY ~ VAL            0.3311      0.0750    4.4151    0.0000 [ 0.1953; 0.4792 ]
________________________________________________________________________________
>

# Using resamplecSEMResults()
b2 <- resamplecSEMResults(res)
b

b2
________________________________________________________________________________
----------------------------------- Overview -----------------------------------

Estimation was successful.

The result is a list of class cSEMResults with list elements:

        - Estimates
        - Information

To get an overview or help type:

        - ?cSEMResults
        - str(<object-name>)
        - listviewer::jsondedit(<object-name>, mode = 'view')

If you wish to access the list elements directly type e.g.

        - <object-name>$Estimates

Available postestimation commands:

        - assess(<object-name>)
        - infer(<object-name)
        - predict(<object-name>)
        - summarize(<object-name>)
        - verify(<object-name>)
________________________________________________________________________________
> cSEM::summarize(b2)
________________________________________________________________________________
----------------------------------- Overview -----------------------------------

        General information:
        ------------------------
        Estimation status                  = Ok
        Number of observations             = 250
        Weight estimator                   = PLS-PM
        Inner weighting scheme             = "path"
        Type of indicator correlation      = Pearson
        Path model estimator               = OLS
        Second-order approach              = NA
        Type of path model                 = Linear
        Disattenuated                      = Yes (PLSc)

        Resample information:
        ---------------------
        Resample method                    = "bootstrap"
        Number of resamples                = 499
        Number of admissible results       = 488
        Approach to handle inadmissibles   = "drop"
        Sign change option                 = "none"
        Random seed                        = 2134958388

        Construct details:
        ------------------
        Name  Modeled as     Order         Mode

        IMAG  Composite      First order   "modeB"
        EXPE  Composite      First order   "modeB"
        QUAL  Composite      First order   "modeB"
        VAL   Composite      First order   "modeB"
        SAT   Common factor  First order   "modeA"
        LOY   Common factor  First order   "modeA"

----------------------------------- Estimates ----------------------------------

Estimated path coefficients:
============================
                                                             CI_percentile
  Path           Estimate  Std. error   t-stat.   p-value         95%
  EXPE ~ IMAG      0.4714      0.0618    7.6328    0.0000 [ 0.3499; 0.5965 ]
  QUAL ~ EXPE      0.8344      0.0230   36.2697    0.0000 [ 0.7807; 0.8704 ] 
  VAL ~ EXPE       0.0457      0.0825    0.5542    0.5795 [-0.1051; 0.2011 ]
  VAL ~ QUAL       0.7013      0.0809    8.6684    0.0000 [ 0.5254; 0.8507 ]
  SAT ~ IMAG       0.2450      0.0546    4.4834    0.0000 [ 0.1392; 0.3572 ]
  SAT ~ EXPE      -0.0172      0.0712   -0.2419    0.8089 [-0.1532; 0.1098 ]
  SAT ~ QUAL       0.2215      0.1013    2.1864    0.0288 [ 0.0302; 0.4255 ]
  SAT ~ VAL        0.5270      0.0848    6.2150    0.0000 [ 0.3473; 0.6748 ]
  LOY ~ IMAG       0.1819      0.0796    2.2854    0.0223 [ 0.0219; 0.3504 ]
  LOY ~ SAT        0.6283      0.0838    7.5020    0.0000 [ 0.4651; 0.8067 ]

Estimated loadings:
===================
                                                               CI_percentile
  Loading          Estimate  Std. error   t-stat.   p-value         95%        
  IMAG =~ imag1      0.6306      0.0944    6.6795    0.0000 [ 0.4277; 0.8014 ]
  IMAG =~ imag2      0.9246      0.0418   22.1197    0.0000 [ 0.8125; 0.9766 ]
  IMAG =~ imag3      0.9577      0.0287   33.4218    0.0000 [ 0.8848; 0.9928 ]
  EXPE =~ expe1      0.7525      0.0739   10.1787    0.0000 [ 0.5875; 0.8720 ]
  EXPE =~ expe2      0.9348      0.0282   33.1043    0.0000 [ 0.8631; 0.9722 ]
  EXPE =~ expe3      0.7295      0.0707   10.3163    0.0000 [ 0.5740; 0.8460 ]
  QUAL =~ qual1      0.7861      0.0673   11.6854    0.0000 [ 0.6351; 0.8910 ]
  QUAL =~ qual2      0.9244      0.0231   39.9599    0.0000 [ 0.8667; 0.9558 ]
  QUAL =~ qual3      0.7560      0.0604   12.5179    0.0000 [ 0.6266; 0.8564 ]
  QUAL =~ qual4      0.7632      0.0557   13.6929    0.0000 [ 0.6362; 0.8511 ]
  QUAL =~ qual5      0.7834      0.0434   18.0410    0.0000 [ 0.6819; 0.8493 ] 
  VAL =~ val1        0.9518      0.0240   39.5935    0.0000 [ 0.8941; 0.9840 ]
  VAL =~ val2        0.8056      0.0632   12.7398    0.0000 [ 0.6642; 0.9024 ]
  VAL =~ val3        0.6763      0.0740    9.1333    0.0000 [ 0.5236; 0.8084 ]
  SAT =~ sat1        0.9243      0.0221   41.7425    0.0000 [ 0.8763; 0.9606 ]
  SAT =~ sat2        0.8813      0.0262   33.6867    0.0000 [ 0.8246; 0.9234 ]
  SAT =~ sat3        0.7127      0.0515   13.8309    0.0000 [ 0.6073; 0.8047 ]
  SAT =~ sat4        0.7756      0.0524   14.7935    0.0000 [ 0.6680; 0.8617 ]
  LOY =~ loy1        0.9097      0.0454   20.0311    0.0000 [ 0.8152; 0.9854 ]
  LOY =~ loy2        0.5775      0.0875    6.5991    0.0000 [ 0.4008; 0.7271 ]
  LOY =~ loy3        0.9043      0.0422   21.4215    0.0000 [ 0.8034; 0.9735 ]
  LOY =~ loy4        0.4917      0.0963    5.1063    0.0000 [ 0.3044; 0.6800 ] 

Estimated weights:
==================
                                                               CI_percentile
  Weight           Estimate  Std. error   t-stat.   p-value         95%
  IMAG <~ imag1      0.0156      0.1131    0.1383    0.8900 [-0.2008; 0.2454 ]
  IMAG <~ imag2      0.4473      0.1511    2.9607    0.0031 [ 0.1461; 0.7243 ]
  IMAG <~ imag3      0.6020      0.1422    4.2345    0.0000 [ 0.3137; 0.8680 ]
  EXPE <~ expe1      0.2946      0.1050    2.8054    0.0050 [ 0.0967; 0.5036 ]
  EXPE <~ expe2      0.6473      0.0856    7.5658    0.0000 [ 0.4445; 0.7863 ]
  EXPE <~ expe3      0.2374      0.0918    2.5864    0.0097 [ 0.0446; 0.3982 ] 
  QUAL <~ qual1      0.2370      0.0863    2.7466    0.0060 [ 0.0953; 0.4197 ]
  QUAL <~ qual2      0.4712      0.0785    5.9999    0.0000 [ 0.3055; 0.6117 ]
  QUAL <~ qual3      0.1831      0.0833    2.1983    0.0279 [ 0.0083; 0.3329 ]
  QUAL <~ qual4      0.1037      0.0642    1.6147    0.1064 [-0.0228; 0.2283 ]
  QUAL <~ qual5      0.2049      0.0586    3.4951    0.0005 [ 0.0841; 0.3211 ]
  VAL <~ val1        0.7163      0.0960    7.4644    0.0000 [ 0.5327; 0.8835 ]
  VAL <~ val2        0.2202      0.0916    2.4031    0.0163 [ 0.0605; 0.4140 ]
  VAL <~ val3        0.2082      0.0603    3.4494    0.0006 [ 0.0838; 0.3131 ]
  SAT <~ sat1        0.3209      0.0154   20.8047    0.0000 [ 0.2935; 0.3509 ] 
  SAT <~ sat2        0.3059      0.0133   22.9457    0.0000 [ 0.2826; 0.3336 ]
  SAT <~ sat3        0.2474      0.0115   21.4575    0.0000 [ 0.2254; 0.2710 ]
  SAT <~ sat4        0.2692      0.0122   22.0146    0.0000 [ 0.2460; 0.2916 ]
  LOY <~ loy1        0.3834      0.0252   15.1963    0.0000 [ 0.3352; 0.4323 ]
  LOY <~ loy2        0.2434      0.0301    8.0757    0.0000 [ 0.1814; 0.2969 ]
  LOY <~ loy3        0.3812      0.0276   13.8057    0.0000 [ 0.3303; 0.4380 ]
  LOY <~ loy4        0.2073      0.0361    5.7362    0.0000 [ 0.1364; 0.2759 ] 

Estimated indicator correlations:
=================================
                                                                CI_percentile
  Correlation       Estimate  Std. error   t-stat.   p-value         95%
  imag1 ~~ imag2      0.6437      0.0607   10.6018    0.0000 [ 0.5184; 0.7480 ]
  imag1 ~~ imag3      0.5433      0.0620    8.7559    0.0000 [ 0.4190; 0.6506 ]
  imag2 ~~ imag3      0.7761      0.0377   20.5656    0.0000 [ 0.6964; 0.8422 ]
  expe1 ~~ expe2      0.5353      0.0587    9.1207    0.0000 [ 0.4098; 0.6347 ]
  expe1 ~~ expe3      0.4694      0.0638    7.3628    0.0000 [ 0.3433; 0.5866 ]
  expe2 ~~ expe3      0.5467      0.0602    9.0828    0.0000 [ 0.4242; 0.6521 ]
  qual1 ~~ qual2      0.6053      0.0605   10.0013    0.0000 [ 0.4724; 0.7083 ] 
  qual1 ~~ qual3      0.5406      0.0622    8.6984    0.0000 [ 0.4150; 0.6495 ]
  qual1 ~~ qual4      0.5662      0.0692    8.1867    0.0000 [ 0.4257; 0.6854 ]
  qual1 ~~ qual5      0.5180      0.0685    7.5664    0.0000 [ 0.3667; 0.6354 ]
  qual2 ~~ qual3      0.6187      0.0523   11.8227    0.0000 [ 0.5143; 0.7106 ]
  qual2 ~~ qual4      0.6517      0.0624   10.4472    0.0000 [ 0.5141; 0.7589 ]
  qual2 ~~ qual5      0.6291      0.0558   11.2732    0.0000 [ 0.5099; 0.7344 ]
  qual3 ~~ qual4      0.4752      0.0612    7.7650    0.0000 [ 0.3507; 0.5879 ]
  qual3 ~~ qual5      0.5074      0.0594    8.5419    0.0000 [ 0.3894; 0.6226 ] 
  qual4 ~~ qual5      0.6402      0.0545   11.7533    0.0000 [ 0.5280; 0.7328 ]
  val1 ~~ val2        0.6344      0.0523   12.1350    0.0000 [ 0.5293; 0.7334 ]
  val1 ~~ val3        0.4602      0.0705    6.5299    0.0000 [ 0.3153; 0.5960 ]
  val2 ~~ val3        0.6288      0.0645    9.7537    0.0000 [ 0.5052; 0.7520 ]

------------------------------------ Effects -----------------------------------

Estimated total effects:
========================
                                                              CI_percentile
  Total effect    Estimate  Std. error   t-stat.   p-value         95%
  EXPE ~ IMAG       0.4714      0.0618    7.6328    0.0000 [ 0.3499; 0.5965 ]
  QUAL ~ IMAG       0.3933      0.0577    6.8182    0.0000 [ 0.2840; 0.5083 ]
  QUAL ~ EXPE       0.8344      0.0230   36.2697    0.0000 [ 0.7807; 0.8704 ]
  VAL ~ IMAG        0.2974      0.0571    5.2092    0.0000 [ 0.2040; 0.4125 ]
  VAL ~ EXPE        0.6309      0.0494   12.7709    0.0000 [ 0.5404; 0.7225 ]
  VAL ~ QUAL        0.7013      0.0809    8.6684    0.0000 [ 0.5254; 0.8507 ]
  SAT ~ IMAG        0.4807      0.0654    7.3490    0.0000 [ 0.3519; 0.6080 ]
  SAT ~ EXPE        0.5001      0.0579    8.6328    0.0000 [ 0.3866; 0.5987 ]
  SAT ~ QUAL        0.5911      0.0935    6.3203    0.0000 [ 0.3979; 0.7733 ]
  SAT ~ VAL         0.5270      0.0848    6.2150    0.0000 [ 0.3473; 0.6748 ]
  LOY ~ IMAG        0.4840      0.0666    7.2622    0.0000 [ 0.3499; 0.6197 ]
  LOY ~ EXPE        0.3142      0.0563    5.5764    0.0000 [ 0.2059; 0.4249 ]
  LOY ~ QUAL        0.3714      0.0865    4.2955    0.0000 [ 0.2157; 0.5645 ]
  LOY ~ VAL         0.3311      0.0722    4.5831    0.0000 [ 0.1901; 0.4708 ]
  LOY ~ SAT         0.6283      0.0838    7.5020    0.0000 [ 0.4651; 0.8067 ]

Estimated indirect effects:
===========================
                                                                 CI_percentile
  Indirect effect    Estimate  Std. error   t-stat.   p-value         95%        
  QUAL ~ IMAG          0.3933      0.0577    6.8182    0.0000 [ 0.2840; 0.5083 ]
  VAL ~ IMAG           0.2974      0.0571    5.2092    0.0000 [ 0.2040; 0.4125 ]
  VAL ~ EXPE           0.5852      0.0691    8.4704    0.0000 [ 0.4373; 0.7168 ]
  SAT ~ IMAG           0.2357      0.0470    5.0203    0.0000 [ 0.1577; 0.3301 ]
  SAT ~ EXPE           0.5173      0.0696    7.4290    0.0000 [ 0.3820; 0.6574 ]
  SAT ~ QUAL           0.3696      0.0641    5.7670    0.0000 [ 0.2398; 0.4879 ]
  LOY ~ IMAG           0.3020      0.0568    5.3175    0.0000 [ 0.2057; 0.4248 ]
  LOY ~ EXPE           0.3142      0.0563    5.5764    0.0000 [ 0.2059; 0.4249 ]
  LOY ~ QUAL           0.3714      0.0865    4.2955    0.0000 [ 0.2157; 0.5645 ]
  LOY ~ VAL            0.3311      0.0722    4.5831    0.0000 [ 0.1901; 0.4708 ]
________________________________________________________________________________

assess(b2)